Let y=(sinx)x+sin−1√x
Also, let u=(sinx)x and v=sin−1√x
∴y=u+v
⇒dydx=dudx+dvdx ...(1)
u=(sinx)x
⇒logu=log(sinx)x
⇒logu=xlog(sinx)
Differentiating both sides with respect to x, we obtain
⇒1ududx=ddx(x)×log(sinx)+x×ddx[log(sinx)]
⇒dudx=u[1.log(sinx)+x.1sinx.ddx(sinx)]
⇒dudx=(sinx)x[log(sinx)+xsinx.cosx]
⇒dudx=(sinx)x(xcotx+logsinx) ...(2)
v=sin−1√x
Differentiating both sides with respect to x, we obtain
dvdx=1√1−(√x)2.ddx(√x)
⇒dvdx=1√1−x.12√x
⇒dvdx=12√x−x2 ...(3)
Therefore, from (1), (2) and (3), we obtain
dydx=(sinx)x(xcotx+logsinx)+12√x−x2