wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the given function w.r.t. x:
(sinxcosx)(sinxcosx), π4<x<3π4

Open in App
Solution

Let y=(sinxcosx)(sinxcosx)
Taking logarithm on both the sides, we obtain
logy=log[(sinxcosx)(sinxcosx)]
logy=(sinxcosx).log(sinxcosx)
Differentiating both sides with respect to x, we obtain
1ydydx=ddx[(sinxcosx).log(sinxcosx)
1ydydx=log(sinxcosx).ddx(sinxcosx)+(sinxcosx).ddxlog(sinxcosx)
1ydydx=log(sinxcosx).(cosx+sinx)+(sinxcosx).1(sinxcosx).ddx(sinxcosx)
dydx=(sinxcosx)sinxcosx[(cosx+sinx).log(sinxcosx)+(cosx+sinx)]
dydx=(sinxcosx)(sinxcosx)(cosx+sinx)[1+log(sinxcosx)]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon