Differentiate the given functions w.r.t. x.
cos x cos 2x cos 3x
Let y = cos x cos 2x cos 3x
Taking log on both side, we get
log y = log (cos x cos 2x cos 3x) [log m×n×1=log m+log n+log l ]
or log y = log (cos x)+log (cos 2x) + log (cos 3x)
Differentiating both sides w.r.t. x, we get
ddxlog y=ddxlog(cos x)+ddxlog(cos 2x)+ddxlog(cos 3x)1ydydx=1cos x(−sin x)+1cos 2x(−sin 2xddx(2x))+1cos 3x(−sin 3x.ddx(3x))⇒ dydx=y{−tan x−2tan 2x−3tan 3x} =−y{tan x+2tan 2x+3tan 3x} =−cos x cos 2x cos 3x{tan x+2tan 2x+3tan 3x}