Differentiate the given functions w.r.t. x.
√(x−1)(x−2)(x−3)(x−4)(x−5)
Taking log on both sides, we get
log y=log{(x−1)(x−2)(x−3)(x−4)(x−5)}1/2 =12[log(x−1)(x−2)−log(x−3)(x−4)(x−5)] =12{log(x−1)+log(x−2)−log(x−3)−log(x−4)−log(x−5)}
Differentiating both sides w.r.t. x, we get
1ydydx=12[ddxlog(x−1)+ddxlog(x−2)−ddxlog(x−3)−ddxlog(x−4)−ddxlog(x−5)] =12{1x−1(1−0)+1x−2(1−0)−1x−3(1−0)1x−4(1−0)−1x−5(1−0)} ⇒ dydx=y2{(1x−1+1x−2)−(1x−3+1x−4+1x−5)} =12√(x−1)(x−2)(x−3)(x−4)(x−5){1x−1+1x−2−1x−3−1x−4−1x−5}