wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the given functions w.r.t. x.

(x cos x)x+(x sin x)1x.

Open in App
Solution

Let y = (x cos x)x+(x sin x)1x

Let u=(x cos x)x, v=(x sin x)1x

y = u + v

Differentiating w.r.t. x, we get dydx=dudx+dvdx

Now, u=(x cos x)x

Taking log on both sides, log u = x log (x cos x)

Differentiating w.r.t. x,

ddx(log u)=xddxlog(x cos x)+log (x cos x)ddx(x) 1ududx=x×1x cos xddx(x cos x)+log (x cos x)×1 1ududx=1cos x(xddxcos x+cos x ddx x)+log(x cos x) 1ududx=1cos x[x(sin x)+cos x]+log (x cos x) =1cos x[x sin x+cos x]+log (x cos x) 1ududx=x tan x+1+log (x cos x) dudx=u[x tan x+1+log(x cos x)] dudx=(x cos x)x[x tan x+1+log (x cos x)]Now, v=(x sin x)1/xTaking log on both sides, log v=1xlog(x sin x)Differentiating w.r.t. x,1vddxlog v=1xddx(log x sin x)+log (x sin x)ddx(1x)1vdvdx=1x[1x sin xddx(x sin x)]+log(x sin x)(1x2) =1x[1x sin x{x ddxsin x+sin x ddx x}](1x2)log(x sin x) 1xdvdx=1x1x sin x[x cos x+sin x]+log (x sin x)(1x2) =x cos xx2sin x+sin xx2sin x+(1x2)log x sin x dvdx=v[cot xx+1x21x2log x sin x] dvdx=v[x cot x+1log x sin xx2] dvdx=(x sin x)1/x[x cot x+1log x sin xx2]Now, putting the values of dudx and dvdx in Eq.(i)dydx=(x cos x)x[x tan x+1+log (x cos x)]+(x sin x)1/x[x cot x+1log x sin xx2]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon