Differentiate the given functions w.r.t. x.
(x cos x)x+(x sin x)1x.
Let y = (x cos x)x+(x sin x)1x
Let u=(x cos x)x, v=(x sin x)1x
∴ y = u + v
Differentiating w.r.t. x, we get dydx=dudx+dvdx
Now, u=(x cos x)x
Taking log on both sides, log u = x log (x cos x)
Differentiating w.r.t. x,
ddx(log u)=xddxlog(x cos x)+log (x cos x)ddx(x)⇒ 1ududx=x×1x cos xddx(x cos x)+log (x cos x)×1⇒ 1ududx=1cos x(xddxcos x+cos x ddx x)+log(x cos x)⇒ 1ududx=1cos x[x(−sin x)+cos x]+log (x cos x) =1cos x[−x sin x+cos x]+log (x cos x)⇒ 1ududx=−x tan x+1+log (x cos x)⇒ dudx=u[−x tan x+1+log(x cos x)]⇒ dudx=(x cos x)x[−x tan x+1+log (x cos x)]Now, v=(x sin x)1/xTaking log on both sides, log v=1xlog(x sin x)Differentiating w.r.t. x,1vddxlog v=1xddx(log x sin x)+log (x sin x)ddx(1x)1vdvdx=1x[1x sin xddx(x sin x)]+log(x sin x)(−1x2) =1x[1x sin x{x ddxsin x+sin x ddx x}]−(1x2)log(x sin x)⇒ 1xdvdx=1x1x sin x[x cos x+sin x]+log (x sin x)(−1x2) =x cos xx2sin x+sin xx2sin x+(−1x2)log x sin x⇒ dvdx=v[cot xx+1x2−1x2log x sin x]⇒ dvdx=v[x cot x+1−log x sin xx2]⇒ dvdx=(x sin x)1/x[x cot x+1−log x sin xx2]Now, putting the values of dudx and dvdx in Eq.(i)dydx=(x cos x)x[−x tan x+1+log (x cos x)]+(x sin x)1/x[x cot x+1−log x sin xx2]