Differentiate (x2−5x+8)(x3+7x+9) in three ways mentioned below, (i) By using product rule (ii) By expanding the product to obtain a single polynomial (iii) By logarithmic differentiation
Do they all give the same answer?
Open in App
Solution
Let y=(x2−5x+8)(x3+7x+9) (i) Let x2−5x+8=u and x3+7x+9=v ∴y=uv ⇒dydx=dudx.v+u.dvdx
By using product rule, ⇒dydx=ddx(x2−5x+8).(x3+7x+9)+(x2−5x+8).ddx(x3+7x+9) ⇒dydx=(2x−5)(x3+7x+9)+(x2−5x+8)(3x2+7) ⇒dydx=2x(x3+7x+9)−5(x3+7x+9)+x2(3x2+7)−5x(3x2+7)+8(3x2+7) ⇒dydx=(2x4+14x2+18x)−5x3−35x−45+(3x4+7x2)−15x3−35x+24x2+56 ∴dydx=5x4−20x3+45x2−52x+11 (ii) y=(x2−5x+8)(x3+7x+9) =x2(x3+7x+9)−5x(x3+7x+9)+8(x3+7x+9) =x5+7x3+9x2−5x4−35x2−45x+8x3+56x+72 =x5−5x4+15x3−26x2+11x+72 ∴dydx=ddx(x5−5x4+15x3−26x2+11x+72) =ddx(x5)−5ddx(x4)+15ddx(x3)−26ddx(x2)+11ddx(x)+ddx(72) =5x4−5×4x3+15×3x2−26×2x+11×1+0 =5x4−20x3+45x2−52x+11 (iii) y=(x2−5x+8)(x3+7x+9) Taking logarithm on both the sides, we obtain logy=log(x2−5x+8)+log(x3+7x+9) Differentiating both sides with respect to x, we obtain 1ydydx=ddxlog(x2−5x+8)+ddxlog(x3+7x+9) ⇒1ydydx=1x2−5x+8.ddx(x2−5x+8)+1x3+7x+9.ddx(x3+7x+9) ⇒dydx=y[1x2−5x+8×(2x−5)+1x3+7x+9×(3x2+7)] ⇒dydx=(x2−5x+8)(x3+7x+9)[2x−5x2−5x+8+3x2+7x3+7x+9] ⇒dydx=(x2−5x+8)(x3+7x+9)[(2x−5)(x3+7x+9)+(3x2+7)(x2−5x+8)(x2−5x+8)(x3+7x+9)] ⇒dydx=2x(x3+7x+9)−5(x3+7x+9)+3x2(x2−5x+8)+7(x2−5x+8) ⇒dydx=(2x4+14x2+18x)−5x3−35x−45+(3x4−15x3+24x2)+(7x2−35x+56) ⇒dydx=5x4−20x3+45x2−52x+11 From the above three observations, it can be concluded that all the dydx results of are same.