wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate (x25x+8)(x3+7x+9) in three ways mentioned below,
(i) By using product rule
(ii) By expanding the product to obtain a single polynomial
(iii) By logarithmic differentiation

Do they all give the same answer?

Open in App
Solution

Let y=(x25x+8)(x3+7x+9)
(i) Let x25x+8=u and x3+7x+9=v
y=uv
dydx=dudx.v+u.dvdx
By using product rule,
dydx=ddx(x25x+8).(x3+7x+9)+(x25x+8).ddx(x3+7x+9)
dydx=(2x5)(x3+7x+9)+(x25x+8)(3x2+7)
dydx=2x(x3+7x+9)5(x3+7x+9)+x2(3x2+7)5x(3x2+7)+8(3x2+7)
dydx=(2x4+14x2+18x)5x335x45+(3x4+7x2)15x335x+24x2+56
dydx=5x420x3+45x252x+11
(ii) y=(x25x+8)(x3+7x+9)
=x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)
=x5+7x3+9x25x435x245x+8x3+56x+72
=x55x4+15x326x2+11x+72
dydx=ddx(x55x4+15x326x2+11x+72)
=ddx(x5)5ddx(x4)+15ddx(x3)26ddx(x2)+11ddx(x)+ddx(72)
=5x45×4x3+15×3x226×2x+11×1+0
=5x420x3+45x252x+11
(iii) y=(x25x+8)(x3+7x+9)
Taking logarithm on both the sides, we obtain
logy=log(x25x+8)+log(x3+7x+9)
Differentiating both sides with respect to x, we obtain
1ydydx=ddxlog(x25x+8)+ddxlog(x3+7x+9)
1ydydx=1x25x+8.ddx(x25x+8)+1x3+7x+9.ddx(x3+7x+9)
dydx=y[1x25x+8×(2x5)+1x3+7x+9×(3x2+7)]
dydx=(x25x+8)(x3+7x+9)[2x5x25x+8+3x2+7x3+7x+9]
dydx=(x25x+8)(x3+7x+9)[(2x5)(x3+7x+9)+(3x2+7)(x25x+8)(x25x+8)(x3+7x+9)]
dydx=2x(x3+7x+9)5(x3+7x+9)+3x2(x25x+8)+7(x25x+8)
dydx=(2x4+14x2+18x)5x335x45+(3x415x3+24x2)+(7x235x+56)
dydx=5x420x3+45x252x+11
From the above three observations, it can be concluded that all the dydx results of are same.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon