wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate xsinx+(sinx)cosx w.r.t x.

Open in App
Solution

Let u=xsinx and v=sinxcosx
y=u+v
dydx=dudx+dvdx
Consider u=xsinx
logu=sinxlogx
1ududx=sinxx+logx(cosx)
dudx=u(sinxx+cosxlogx)
dudx=xsinx(sinxx+cosxlogx)

Consider v=(sinx)cosx
logv=cosxlogsinx
1vdvdx=cosxsinx(cosx)+logsinx(sinx)
dvdx=(sinx)cosx(cos2xsinxsinxlogsinx)
dydx=xsinx(sinxx+cosxlogx)+(sinx)cosx(cos2xsinxsinxlogsinx)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon