Diffrentiate: sin(ax+b)cos(cx+d)
Given:Let y=sin(ax+b)cos(cx+d)
Let u=sin(ax+b) and v=cos(cx+d)
Therefore,
dudx=cos(ax+b)×d(ax+b)dx
=cos(ax+b)×a ...(i)
And
dvdx=−sin(cx+d)×d(cx+d)dx
=−sin(cx+d)×c...(ii)
Now,
dydx=u′v−v′uv2
From (i) and (ii)
=acos(ax+b)⋅cos(cx+d)+csin(cx+d)⋅sin(ax+b)(cos(cx+d))2
=acos(ax+b)⋅cos(cx+d)cos2(cx+d)+csin(cx+d)⋅sin(ax+b)cos2(cx+d)
=acos(ax+b)1cos(cx+d)+csin(ax+b)sin(cx+d)cos(cx+d)×1cos(cx+d)
=acos(ax+b)⋅sec(cx+d)+csin(ax+b)⋅tan(cx+d)⋅sec(cx+d)