wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Discuss the continuity of the following functions at the indicated point(s):
(i) fx=x cos1x,x0 0 ,x=0at x=0

(ii) fx=x2sin1x,x0 0 ,x=0at x=0

(iii) fx=(x-a)sin1x-a,xa 0 ,x=aat x=a

(iv) fx=ex-1log(1+2x), ifxa 7 , ifx=0at x=0

(v) fx=1-xn1-x,x1n-1 ,x=1nNat x=1

(vi) fx=x2-1x-1, forx1 2 , forx=1at x=1

(vii) fx=2x+x2x,x0 0 , x=0at x=0

Open in App
Solution

(i) Given:
fx=x cos1x, x00, x=0
We observe
limx0 fx=limx0x cos1xlimx0 fx=limx0xlimx0cos1xlimx0 fx=0 ×limx0cos1x=0
limx0fx=f0
Hence, f(x) is continuous at x = 0.

(ii) Given:
fx=x2sin1x, x00, x=0
We observe
limx0x2 sin1x=limx0x2limx0sin1x=0 ×limx0sin1x=0
limx0fx=f0
Hence, f(x) is continuous at x = 0.

(iii) Given:
fx=x-a sin1x-a, xa0, x=a

Putting x−a = y, we get
limxax-a sin1x-a=limy0y sin1y=limy0ylimy0sin1y=0 × limy0sin1y=0
limxafx=fa=0
Hence, f(x) is continuous at x = a.

(iv) Given:
fx=ex-1log1+2x, if x07, if x=0

We observe
limx0fx=limx0ex-1log1+2xlimx0fx=limx0ex-12xlog1+2x2xlimx0fx=12limx0ex-1xlog1+2x2xlimx0fx=12×limx0ex-1xlimx0log1+2x2x=12×11=12
And, f0=7
limx0fxf0

Hence, f(x) is discontinuous at x = 0.

(v) Given:
fx=1-xn1-x, x1n-1, x=1

Here, f1=n-1

limx1fx=limx11-xn1-xlimx1fx=limx11-xn-1+C1n1-xn-2x+C2n1-xn-3x2+...+Cn-1n1-x0xn-1
limx1fx=0+0...+1n-1=1f1

Thus, fx is discontinuous at x=1.

(vi) Given:
fx=x2-1x-1, x12, x=1
fx=x+1, x<-1-x-1, -1 x<1x+1, x>12, x=1
We observe
(LHL at x = 1) = limx1-fx=limh0f1-h=limh0-1-h-1=limh0-2+h=-2
And, f1=2

limx1-fxf1

Hence, f(x) is discontinuous at x = 1.

(vii) Given:
fx=2x+x2x, x00, x=0

fx=2x+x2x, x>0-2x+x2x, x<00, x=0

fx=x+2, x>0x-2, x<00, x=0

We observe

(LHL at x = 0) = limx0-fx=limh0f-h=limh0-h-2=-2
(RHL at x = 0) = limx0+fx=limh0fh=limh02+h=2

limx0-fxlimx0+fx

Hence, f(x) is discontinuous at x = 0.


flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon