Discuss the continuity of the following functions :
(b) f(x) = sin x + cos x
Here, f(x) = sin x-cos x
=√2 sin(1√2sin x−1√2cos x)=√2 sin(sin x cosπ4−cos x sinπ4)
=√2 sin(x−π4)
At x=a a, where aϵR
LHL = limx→a−f(x)=limx→0−√2sin(x=π4)limh→0√2sin(a−h+π4)
=limx→0−√2[sin(a+π4)cos h−cos(a+π4)sin h]
=√2[sin (a−π4)]cos 0−√2cos(a−π4)sin 0=√2 sin(a−π4)
RHL = limx→a+√2sin(x=π4)limh→0√2sin(a−h+π4)
limx→0−=√2[sin(a−π4)cos h+cos(a−π4)sin h]
[Use formula sin (A+B)]
=√2[sin (a−π4)]cos 0+√2cos(a−π4)sin 0=√2 sin(a−π4)
Also, f(a) =√2 sin(a−π4)
∴ LHL = RHL = f(a). Hence, f(x) is continuous at all points.