Discuss the continuity of the following functions :
(c) f(x) = sin x cos x
Here, f(x) =sin x cos x
12×2 sin x cos x =12sin 2x
At x=a, where aϵR
LHL = limx→a−f(x)=limx→a−12sin 2x =limx→0−12sin 2(a−h)
=limx→a−12[sin 2a cos 2h−cos 2a sin 2h]
=12[sin 2a cos 0−cos 2a sin 0]=12sin 2a [Use formula sin(A+B)]
LHL = limx→a+f(x)=limx→a+12sin 2x =limh→012sin 2(a+h)
=limh→012[sin 2a cos 2h−cos 2a sin 2h][Use formula sin(A-B)]
=limh→012[sin(2a+2h)]12sin 2a
Also, f(a) =12~sin~2a
∴ LHL=RHL=f(a). Hence, f(x) is continuous at all points.