wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Discuss the continuity of the following functions :

(c) f(x) = sin x cos x

Open in App
Solution

Here, f(x) =sin x cos x

12×2 sin x cos x =12sin 2x

At x=a, where aϵR

LHL = limxaf(x)=limxa12sin 2x =limx012sin 2(ah)

=limxa12[sin 2a cos 2hcos 2a sin 2h]

=12[sin 2a cos 0cos 2a sin 0]=12sin 2a [Use formula sin(A+B)]

LHL = limxa+f(x)=limxa+12sin 2x =limh012sin 2(a+h)

=limh012[sin 2a cos 2hcos 2a sin 2h][Use formula sin(A-B)]

=limh012[sin(2a+2h)]12sin 2a

Also, f(a) =12~sin~2a

LHL=RHL=f(a). Hence, f(x) is continuous at all points.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon