1+12+222!+12+22+323!+12+22+32+424!+...∞=b6e . Find b
Let Tn be the nth term of the given series then
Tn=12+22+32+42+....+n2n!
=∑n2n!
=n(n+1)(2n+1)6n(n−1)! .... (sum of squares of the first n natural numbers)
=(n+1)(2n+1)6(n−1)!
=2n2+3n+16(n−1)!
Dividing 2n2+3n+1 by n−1
∴ 2n2+3n+1=(n−1)(2n+5)+6
∴ Tn=(n−1)(2n+5)+66(n−1)!
=(n−1)(2n+5)6(n−1)!+1(n−1)!
=(n−1)(2n+5)6(n−1)(n−2)!+1(n−1)!
=(2n+5)6(n−2)!+1(n−1)!
Dividing 2n+5 by n−2
∴ 2n+5=2(n−2)+9
∴ Tn=2(n−2)+96(n−2)!+1(n−1)!
=2(n−2)6(n−2)!+96(n−2)!+1(n−1)!
=26(n−3)!+96(n−2)!+1(n−1)!
Hence sum of infinite terms of given series
S∞=∞∑n=1Tn
=∞∑n=1(26(n−3)!+96(n−2)!+1(n−1)!)
=26∞∑n=11(n−3)!+96∞∑n=11(n−2)!+∞∑n=11(n−1)!
=26(1(−2)!+1(−1)!+10!+11!+12!+...)+96(1(−1)!+10!+11!+12!+...)+(10!+12!+13!+...)
=26(0+0+e)+96(0+e)+(e) . ..... ex=1+x+x22!+x33!+...
=176e
⇒b=17