The correct option is
C 0Given cos(x−y)+cos(y−z)+cos(z−x)=−32
⇒cosxcosy+sinxsiny+cosycosz+sinysinz+cosz+cosx+sinzsinx=−32
⇒2[cosxcosy+sinxsiny+cosycosz+sinysinz+cosz.cosx+sinzsinx]+3=0
We can use 3 as 1+1+1=(sin2x+cos2x)+(sin2y+cos2y)+(sin2z+cos2z)
⇒2[cosxcosy+sinxsiny+cosycosz+sinysinz+cosz.cosx+sinz.sinx]+(sin2x+cos2x)+(sin2y+cos2y)+(sin2z+cos2z)=0
⇒cos2x+cos2+cos2z+2[cosx.cosy+cosy.cosz+cosz.cosx]+sin2x+sin2y+sin2z+2[sinx.siny+siny.sinz+sinz.sinx]=0
⇒(cosx+cosy+cosz)2+(sinx+siny+sinz)2=0
[∵(a+b+c)2+a2+b2+c2+2(ab+bc+ca)]
As sinx,siny,sinz,cosx,cosycosz, are all real values then sum of two squares will be zero only if both of them are zero
⇒cosx+cosy+cosz=sinx+siny+sinz=0
⇒∑cosx=∑sinx=0
∴∑(cosx)=0