The correct options are
B f(x) has a local minimum at x=1
C f(x) is increasing in [1,2√5]
Let f(x)=ax3+bx2+cx+d
Now
f′(x)x=−1=0
3ax2+2bx+c=0 at x=-1.
3a−2b+c=0 ...(i)
Also
f′′(x)x=0=0
6ax+2b=0 at x=0
b=0, ∴f(1)=−1
a+b+c+d=−1 ...(ii)
Since b=0, we get
a+c+d=−1 and from i
3a+c=0
d−2a=−1
Now
f(2)=18
8a+2c+d=18
c=−3a and d=2a−1
Thus
8a−6a+2a−1=18
4a=19
∴a=194
c=−574
d=344
Hence
f(x)=14[19x3−57x+34]
f′(x)=14[57x2−57]
Hence
f′(x)x=1=0
and
f′′(x)=14[114.x]
f"(x)>0 at x=1.
Hence it has a local minimum at x=1.
Now f′(x)>0 implies
14[57x2−57]>0
x2−1>0
|x|>1
xϵ(−∞,−1]∪[1,∞)
Hence f(x) is increasing in the above interval.