Given
1x+1+2x(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+........ (n terms)
=1−xx+1+2x(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+...... (n terms)
=1−xx+1(1−2x+2)+3x2(x+1)(x+2)(x+3)+...... (n terms)
=1−x2(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+...... (n terms)
=1−x2(x+1)(x+2)(1−3x+3)+...... (n terms)
=1−x3(x+1)(x+2)(x+3)+...... (n terms)
Continuing in the same way, we get
1x+1+2x(x+1)(x+2)+3x2(x+1)(x+2)(x+3)+........(n terms)
=1−xn(x+1)(x+2)(x+3)..(x+n)