The correct option is B
1x+1x2+1x+1
D(x)=x3+x2=x2(x+1)
So, 2x2+2x+1x2(x+1)=Ax+B/x2+C/(x+1)
So, common denominator in RHS we get
2x2+2x+1=Ax(x+1)+B(x+1)+Cx2−−1)
for the value of B substition
x=0⇒B=1
for the value of C keep x=−1
1=c⇒c=1
for the value of A keep x=1
5=A(2)+2B+C we know B=C=1
5=2A+3⇒A=1
So, 1x+1+1x2+1(x+1)