The correct option is C x=3,y=−1
Given, (1+i)x−2i3+i+(2−3i)y+i3−i=i.
or (1+i)(3−i)x−2i(3−i)+(2−3i)(3+i)y+i(3+i)=i(3+i)=i(3+i)(3−i)
or (4+2i)x−6i−2+(9−7i)y+3i−1=10i
Equating real and imaginary parts,
4x+9y−3=0 ...(1)
and 2x−7y−3=10
or 2x−7y−13=0 ...(2)
Solving (1) and (2), we get x=3,y=−1
Ans: B