The correct option is C B, A, C
x2+3x+5(x+1)(x+2)(x+3)=A(x+2)(x+3)+B(x+3)+C(x+1)(x+2)(x+3)
f(x)=x2+3x+5
[A(x+2)+B](x+3)+C′C′ is the remainder
when f(x) is divided by x+3
So, c=f(−3)=−1
f(−2)=B+C=3⇒B=4
and comparing x2 terms A=1
So, A=1;B=4;C=−1
decreasing order
B,A,C