The correct option is
D None of these
I=∫10dx√1+x−√x let √x=u⇒du=12√xdx
when x=0, 4=0 & x==1. u=1
=∫102 u du√1+u2−u
=∫10(2u−1)+1√u2−u+1du=∫10(2u−1)√u2−u+1du+∫10du√u2−u+1
=[2√u2−u+1]10+∫10du√(u−12)2+34[∵dx√x2+a2=log∣∣x+√x2+a2∣∣+c]
=2(1−1)+⎡⎣log∣∣
∣∣u−12+√(u−12)2+34∣∣
∣∣⎤⎦10
=log∣∣∣1−12+1∣∣∣−log∣∣∣1−12∣∣∣
=log3
∴ option D is correct.