2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
∫01dx√1 + x +...
Question
∫
1
0
d
x
√
1
+
x
+
√
x
is equal to
A
4
3
(
√
2
−
1
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3
4
(
√
2
−
1
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
3
(
1
−
√
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
4
(
1
−
√
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
4
3
(
√
2
−
1
)
I
=
∫
1
0
d
x
√
1
+
x
+
√
x
=
∫
1
0
√
1
+
x
−
√
x
(
√
1
+
x
+
√
x
)
(
√
1
+
x
−
√
x
)
d
x
=
∫
1
0
(
√
1
+
x
−
√
x
)
(
1
+
x
)
−
x
d
x
=
∫
1
0
(
1
+
x
)
1
/
2
d
x
−
∫
1
0
x
1
/
2
d
x
=
[
(
1
+
x
)
3
/
2
3
/
2
]
1
0
−
[
x
3
/
2
3
/
2
]
1
0
=
2
3
[
2
3
/
2
−
1
]
−
2
3
[
1
−
0
]
=
2
3
(
2
√
2
−
1
)
−
2
3
=
2
3
[
2
√
2
−
1
−
1
]
=
2
3
(
2
√
2
−
2
)
=
4
3
(
√
2
−
1
)
.
Suggest Corrections
0
Similar questions
Q.
The value of
2
1
2
×
3
1
3
×
4
1
4
10
−
1
5
×
5
3
5
÷
4
−
2
3
×
5
−
7
5
4
−
3
5
×
6
−
1
3
is equal to:
Q.
1
+
1
2
(
1
+
2
)
+
1
3
(
1
+
2
+
3
)
+
1
4
(
1
+
2
+
3
+
4
)
+
.
.
.
.
.
upto
20
terms is
Q.
3
1
4
−
4
5
o
f
5
6
4
1
3
÷
1
5
−
(
3
10
+
21
1
5
)
−
(
1
2
3
o
f
1
1
2
)
is equal to:
Q.
Find the value of:
(1)
(2)
(3)
(4)
(5)