wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0xlogsinx=πkmlog1n..Find k+m+n ?

Open in App
Solution

Let I=π0xlogsinx ...(1)
using baf(x)dx=baf(a+bx)dx
I=π0(πx)log(sin(πx))dx
=π0(πx)logsinxdx ...(2)
From (1) and (2)
2I=ππ0logsinxdx==ππ20logsinxdx+π20log(sin(πx))dx
using 2a0f(x)dx=a0f(x)+f(2aqx)dx
2I=2ππ20logsinxdx
I=ππ20logsinxdx ...(3)
Now using a0f(x)dx=a0f(ax)dx
I=ππ20logsin(π2x)dx
=ππ20logcosxdx ...(4)
From (3) and (4)
2I=ππ20log(sinxcosx)dx=ππ20logsin2xdxππ20log2dx
Substitue 2x=t2dx=dt
2I=π2π0logsintdt[πxlog2]π20
2I=2π2π20logsintdtπ22log2
2I=ππ20logsinxdxπ22log2
I=π22log12
Hence, k+m+n=2+2+2=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon