Let I=∫π0xlogsinx ...(1)
using ∫baf(x)dx=∫baf(a+b−x)dx
∴I=∫π0(π−x)log(sin(π−x))dx
=∫π0(π−x)logsinxdx ...(2)
From (1) and (2)
2I=π∫π0logsinxdx==π⎛⎜⎝∫π20logsinxdx+∫π20log(sin(π−x))dx⎞⎟⎠
using ∫2a0f(x)dx=∫a0f(x)+f(2aq−x)dx
∴2I=2π∫π20logsinxdx
⇒I=π∫π20logsinxdx ...(3)
Now using ∫a0f(x)dx=∫a0f(a−x)dx
∴I=π∫π20logsin(π2−x)dx
=π∫π20logcosxdx ...(4)
From (3) and (4)
⇒2I=π∫π20log(sinxcosx)dx=π∫π20logsin2xdx−π∫π20log2dx
Substitue 2x=t⇒2dx=dt
∴2I=π2∫π0logsintdt−[πxlog2]π20
2I=2π2∫π20logsintdt−π22log2
⇒2I=π∫π20logsinxdx−π22log2
∴I=π22log12
Hence, k+m+n=2+2+2=6