[3.3]=3
I=∫3|x|3dxI=3∫|x||x|2dx|x|2=x2I=3∫|x|x2dx
Using integration by parts;
u=|x|u′=|x|xv=x2∫vdx=x33I=3|x|x33−3∫|x|xx33dx+CI=|x|x3−∫|x|x2dx+C∫|x|x2dx=I3I=|x|x3−I3+C43I=|x|x3+CI=3x⋅x2|x|4+CI=3x⋅|x|2|x|4+C{|x|2=x2}∴I=3x|x|34+C