wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1sin3xsin(x+α)dx.

Open in App
Solution

Consider sin3xsin(x+α)
=sin3x[sinxcosα+cosxsinα]
=sin4xcosα+sin3xcosxsinα
=sin4xcosα+sin3xcosxsinα×sinxsinx
=sin4x[cosα+cosxsinxsinα]
sin3xsin(x+α)=sin4x[cosα+cotxsinα] ......(1)
sin3xsin(x+α)=sin4x(cosα+cotxsinα)
Now, dxsin3xsin(x+α)
=dxsin4x(cosα+cotx.sinα)
=dxsin2x(cosα+cotx.sinα)
Let cosα+cotxsinα=t
Differentiating w.r.t x we get
0sinαcsc2xdx=dt
dx=dtsinαcsc2x
Now our equation becomes =dxsin2x(cosα+cotx.sinα)
=1sin2xt×1sinα×sin2xdt
=1sin2xt×1sinα×sin2xdt
=1sinαdtt
=1sinαt12dt
=1sinα⎢ ⎢ ⎢t12+112+1+c⎥ ⎥ ⎥
=1sinα[2t+c]
Putting the value of t=cosα+cotxsinα
=1sinα[2cosα+cotxsinα+c]
=2sinα[cosα+cotxsinα+c]
From (1)
sin3xsin(x+α)sin4x=cosα+cotxsinα
sin(x+α)sinx=cosα+cotxsinα
=2sinα[cosα+cotxsinα+c]
=2sinαsin(x+α)sinx+c

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon