Consider sin3xsin(x+α)
=sin3x[sinxcosα+cosxsinα]
=sin4xcosα+sin3xcosxsinα
=sin4xcosα+sin3xcosxsinα×sinxsinx
=sin4x[cosα+cosxsinxsinα]
∴sin3xsin(x+α)=sin4x[cosα+cotxsinα] ......(1)
∴sin3xsin(x+α)=sin4x(cosα+cotxsinα)
Now, ∫dx√sin3xsin(x+α)
=∫dx√sin4x(cosα+cotx.sinα)
=∫dxsin2x√(cosα+cotx.sinα)
Let cosα+cotxsinα=t
Differentiating w.r.t x we get
0−sinαcsc2xdx=dt
⇒dx=−dtsinαcsc2x
Now our equation becomes =∫dxsin2x√(cosα+cotx.sinα)
=∫1sin2x√t×1−sinα×sin2xdt
=∫1sin2x√t×1−sinα×sin2xdt
=−1sinα∫dt√t
=−1sinα∫t−12dt
=−1sinα⎡⎢
⎢
⎢⎣t−12+1−12+1+c⎤⎥
⎥
⎥⎦
=−1sinα[2√t+c]
Putting the value of t=cosα+cotxsinα
=−1sinα[2√cosα+cotxsinα+c]
=−2sinα[√cosα+cotxsinα+c]
From (1)
sin3xsin(x+α)sin4x=cosα+cotxsinα
sin(x+α)sinx=cosα+cotxsinα
=−2sinα[√cosα+cotxsinα+c]
=−2sinα√sin(x+α)sinx+c