No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan[1+logtanx2]+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sec2[1+logtanx2]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−tan[1+logtanx2]+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Dtan[1+logtanx2]+C Let I=∫cscxcos2(1+logtanx2)dx On putting 1+logtanx2=t ⇒1tanx2⋅sec2x2⋅12dx=dt ⇒12sinx2cosx2dx=dt ⇒cscxdx=dt Therefore, I=∫dtcos2t=∫sec2tdt=tant+C =tan(1+logtanx2)+C