No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin−1(sin2x3)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan−1(sinx3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin−1(sinx3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsin−1(sin2x3)+C We have, ∫sin2x√9−sin4xdx
Let, sin2x=t
Differentiating both side, we get 2sinxcosxdx=dt ⇒sin2xdx=dt ⇒∫dt√9−t2=∫dt√32−t2{∵∫dt√a2−t2=sin−1(ta)+C}=sin−1(t3)+C=sin−1(sin2x3)+C