Evaluate : ∫sinx−cosx√sin2xdx
We are given that I=∫sinx−cosx√sin2xdx
now, divided cosx in Numerator &
Denominator
I=∫tanx−12sinx.cosxcos2xdx
=∫tanx−1√2tandx
=1√2∫(√tanx−√cotx)dx
=1√2∫√tanxdx+1√2∫−√cotxdx
Let √tanx=t⇒tanx=t2
take differentiation wrt x. we get,
∴sec2xdx=2tdt
dx=2tdtsec2x=2tdt1+tan2x
∴dx=2tdt1+t2
=1√2∫2t2dt1+t2−1√2∫1t2tdt1+t2
=1√2[∫2t21+t2dt−∫2dt1+t2]
=2√2[∫1+t2−11+t2dt]−[2tan−1t]√2
=√2[t−tan−1t]−√2tan−1t+c
=√2t−2√2tan−1t+c
I=√2tanx−2√2tan−1(√tanx)+c