wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sinxcosxsin2xdx.

Open in App
Solution

Evaluate : sinxcosxsin2xdx
We are given that I=sinxcosxsin2xdx
now, divided cosx in Numerator &
Denominator
I=tanx12sinx.cosxcos2xdx
=tanx12tandx
=12(tanxcotx)dx
=12tanxdx+12cotxdx
Let tanx=ttanx=t2
take differentiation wrt x. we get,
sec2xdx=2tdt
dx=2tdtsec2x=2tdt1+tan2x
dx=2tdt1+t2
=122t2dt1+t2121t2tdt1+t2
=12[2t21+t2dt2dt1+t2]
=22[1+t211+t2dt][2tan1t]2
=2[ttan1t]2tan1t+c
=2t22tan1t+c
I=2tanx22tan1(tanx)+c

1178073_1070395_ans_9d5e1cee1f3544b6aacd66eb5d14f93d.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon