The correct option is
A ln|x+√x2+1|−ln|x+√x2−1|+C,|x|>1Solution:I=∫√x2−1−√x2+1√x4−1dx
I=∫1√x2+1−1√x2−1
where, x2−1>0i.e.|x|>1
I=ln|x+√x2+1|−ln|x+√x2−1|+C,|x|>1
Here, we know that
∫1√x2+1=ln|x+√x2+1|+C and
∫1√x2−1=ln|x+√x2−1|+C
Hence, B is the correct option.