The correct option is
B xetan−1x+cLet I=∫etan−1x[1+x+x21+x2]dx
=∫etan−1x[1+x1+x2]dx
=∫[etan−1x+xetan−1x1+x2]dx
For f(x)=etan−1x, above integral I reduces in the form of ∫[f(x)+xf′(x)]dx
But we know that, ddx(xf(x)+c)=[f(x)+xf′(x)]
∴∫[f(x)+xf′(x)]dx=xf(x)+c
∴I=xetan−1x+c
∴I=∫etan−1x[1+x+x21+x2]dx=xetan−1x+c
Hence, option 'B' is correct.