The correct option is B x3−3x2+6x−6
Given, ∫ex23log2xdx=exf(x)+c ......(A)
Consider, ∫ex23log2xdx=∫ex.x3dx
∫ex×x3dx=x3∫exdx−∫3x2ex dx
=x3ex−3∫x2ex dx ....(1)
∫x2ex=x2ex−2∫xex dx .....(2)
∫xex= xex−ex .....(3)
Using (3) in (2),
∫x2ex=x2ex−2(xex−ex) ....(4)
Using (4) in (1)
∫ex.x3dx=x3ex−3[x2ex−2(xex−ex)]+c
=x3ex−3x2ex+6xex−6ex+c
=ex[x3−3x2+6x−6]+c
On comparing with eqn (A), we get
f(x)=x3−3x2+6x−6