The correct option is
A 15[log|x−2|−12log(x2+1)−2tan−1x]+c∫1(x−2)(x2+1) dx=
1(x−2)(x2+1)=Ax−2+Bx+cx2+1
1=A(x2+1)+(Bx+c)(x−2)
A=15;A+B=0 −2B+C=0
B=−15 C=−25
A=15;B=−15;C=−25
∫⎛⎝[15](x−2)+⎡⎢⎣(−15)x−(−25)(x2+1)⎤⎥⎦⎞⎠dx
=15[log(x−2)−12 log(x2+1)−2tan−1x]+C
So, ∫1(x−2)(x2+1)dx= 15[log(x−2)− 12 log(x2+1)−2tan−1x]+C