The correct option is D −18log(4x2−4x−3)+116log2x−32x+1.
Let I=∫1−x4x2−4x−3dx=∫(12(4x2−4x−3)−8x−48(4x2−4x−3))dx
⇒I=I1+I2
Where
I1=−18∫8x−44x2−4x−3dx
Put 4x2−4x−3=t⇒(8x−4)dx=dt
Therefore I1=−18logt=−18log(4x2−4x−3)
And I2=12∫14x2−4x−3dx=12∫1(2x−1)2−4dx
Put u=2x−1⇒du=⇒2dx
Therefore
I2=14∫1u2−4du=−14∫14(1−u24)du=−116∫11−u24du
Now put u2=s⇒12du=ds
I2=−18∫11−s2ds=−116log(1+s1−s)
=−116log(2+u2−u)=−116log(2+2x−12−2x+1)=116log(2x−32x+1)
Hence, option 'D' is correct.