Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cosx(cosecx)203
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−tanx(cosecx)203
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cotx(sinx)203
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−cotx(cosx)203 ∫(cos−203x)cosec2xdx−∫203(cosx)203dx =I1−I2 Integrate I1 by parts ∴I1=(cos−203x)(−cotx)−∫cotx.203cos−204x(−sinx)dx I1=−cotx(cosx)203+∫203(cosx)203dx+C ∴I1−I2=−cotx(cosx)203+C