wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cosx1sinx+1exdx is equal to

A
excosx1+sinx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cexsinx1+sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cex1+sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cexcosx1+sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A excosx1+sinx+c
Let u be cosx1sinx+1
and dv be ex then v=ex
we know that udv=uvvdu
(cosx1sinx+1)ex=(cosx1sinx+1)exex(cosx1)(cosx)(sinx+1)(sinx)(sinx+1)2\
we have to do the by parts again taking u=(cosx1)(cosx)(sinx+1)(sinx)(sinx+1)2 and v=ex
(1cosx+sinx(1+sinx)2)ex=(1cosx+sinx(1+sinx)2)exex((1cosx+sinx)2(1+sinx)(cosx)(1+sinx)2(sinx+cosx)(1+sinx)4)
(1cosx+sinx(1+sinx)2)ex=(ex1+sinx) on back substitution we get
(cosx1sinx+1)ex=(cosx1sinx+1)ex((ex1+sinx))
(cosx1sinx+1)ex=ex(cosx)1+sinx
Hence, option, 'A' is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon