The correct option is A excosx1+sinx+c
Let u be cosx−1sinx+1
and dv be ex then v=ex
we know that ∫udv=uv−∫vdu
⇒∫(cosx−1sinx+1)ex=(cosx−1sinx+1)ex−∫ex(cosx−1)(cosx)−(sinx+1)(−sinx)(sinx+1)2\
we have to do the by parts again taking u=(cosx−1)(cosx)−(sinx+1)(−sinx)(sinx+1)2 and v=ex
⇒∫(1−cosx+sinx(1+sinx)2)ex=(1−cosx+sinx(1+sinx)2)ex−∫ex((1−cosx+sinx)2(1+sinx)(cosx)−(1+sinx)2(sinx+cosx)(1+sinx)4)
⇒∫(1−cosx+sinx(1+sinx)2)ex=−(ex1+sinx) on back substitution we get
⇒∫(cosx−1sinx+1)ex=(cosx−1sinx+1)ex−(−(ex1+sinx))
⇒∫(cosx−1sinx+1)ex=ex(cosx)1+sinx
Hence, option, 'A' is correct.