∫cos(x−a)cos(x−b)dx=Ax+Bln|cos(x−b)|+C, then B/A=
tan(a–b)
tan(a+b)
tan(b–a)
–tan(a+b)
∫cos(x−b+b−a)cos(x−b)dx
=∫[cos(b−a)−sin(b−a)tan(x−a)]dx
=xcos(b−a)+sin(b−a)ln|cos(x−a)|+C
∴BA=tan(b−a)