∫baf(x)dx=∫baf(a+b−x)dx
=∫3π4π4xdx1+sinx ......(1)
Replace x→π4+3π4−x=π−x
=∫3π4π4(π−x)dx1+sin(π−x)
=∫3π4π4(π−x)dx1+sinx ......(1)
Adding (1) and (2) we get
2I=∫3π4π4xdx1+sinx+∫3π4π4(π−x)dx1+sinx
2I=∫3π4π4(x+π−x)dx1+sinx
2I=∫3π4π4(π)dx1+sinx
2I=π∫3π4π4dx1+sinx
Let t=x−π2
2I=π∫π4−π4dt1+cost
⇒2I=2π∫π40dt1+cost
⇒2I=2π∫π40sec2t2dt
⇒2I=2π[tant2]π40
⇒2I=2πtanπ8
⇒2I=2π(√2−1)
∴I=π(√2−1)