The correct option is B loge|tan−1(secx+cosx)|+C
Let I=∫sin3x(cos4x+3cos2x+1)tan−1(secx+cosx)dx
=∫sin3x/cos2x(cos2x+3+sec2x)tan−1(secx+cosx)dx
=∫[11+(secx+cosx)2×sinx(1−cos2x)cos2x×1tan−1(secx+cosx)]dx
=∫[1tan−1(secx+cosx)×11+(secx+cosx)2×(tanxsecx−sinx)]dx
=∫1tan−1(secx+cosx){tan−1(secx+cosx)}
Therefore, I=loge|tan−1(secx+cosx)+C