The correct option is A log|x−3√2x−1|+c
∫x+22x2−7x+3dx
=∫x+2(x−3)(2x−1)dx
x+2(x−3)(2x−1)=A(x−3)+B(2x−1) ....(1)
⇒x+2=A(2x−1)+B(x−3)
Put x=3⇒A=1
Put x=1⇒B=−1
Put this value in (1)
x+2(x−3)(2x−1)=1(x−3)−1(2x−1)
∫x+2(x−3)(2x−1)dx=∫1(x−3)dx−∫1(2x−1)dx
=log|x−3|−12log|2x−1|+C
=log|x−3|−log√2x−1+C
=log|x−3|√2x−1+C