The correct option is
D All of these
We have
x2−8x+7(x2−3x−10)2=(x−7)(x−1)(x−5)2(x+2)2
Let (x−7)(x−1)(x−5)2(x+2)2=Ax−5+B(x−5)2+Cx+2+D(x+2)2
Then, (x−7)(x−1)=A(x−5)(x+2)2+B(x+5)2+C(x+2)(x−5)2+D(x−5)2 ...(1)
On putting x=5 and x=−2 respectively, we get
−8=B(7)2⇒B=−849 and 27=D(−7)2⇒D=2749
Now, on putting 4x=0 in (1), we get
7=−20A+4B+50C+25D⇒7=−20A−3249+50C+27×2549
⇒20A−50C=30049⇒2A−5C=3049 ...(2)
On putting x=1 in (1), we get
0=−16A+9B+48C+16D⇒0=−16A+48C−7249+44249
⇒16A−48C=36049⇒2A−6C=4549 ...(3)
On solving (2) and (3), we get
A=−4598,C=−1549
∴(x−7)(x−1)(x−5)2(x+2)2=−4598.1x−5−849.1(x−5)2−1549.1x+2+2749.1(x+2)2
Integrating both sides, we get
∫(x−7)(x−1)(x−5)2(x+2)2dx=−4598∫1x−5dx−849∫1(x−5)2dx−1549∫1x+2dx+2749∫1(x+2)2dx
=−4598log|x−5|+849.1x−5−1549log|x+2|−2749.1x+2+c
∴P=−4598,Q=849,R=1549 and S=2749