The correct option is
C −√9+8x−x2+sin−1x−45Let
I=∫x√(9+8x−x2)dxComparing x=l(8−2x)+m⇒−2l=1,8l+m=0⇒I=−12,m=4
Therefore
I=l∫8−2x√(9+8x−x2)dx+m∫dx√[25−(x2−8x+16)]
Put 9+8x−x2=t⇒(8−2x)dx=dt
Therefore
I=l∫1√(t)dt+m∫dx√[52−(x−4)2]
=l×2√t+msin−1x−45=−√9+8x−x2+sin−1x−45
Hence, option 'C' is correct.