1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
∫0π/2 2logsin...
Question
π
2
∫
0
(
2
log
sin
x
−
log
sin
2
x
)
d
x
Open in App
Solution
I
=
∫
π
2
0
(
2
log
sin
x
−
log
sin
2
x
)
d
x
we have
f
(
x
)
=
2
log
sin
x
−
log
sin
2
x
f
(
x
)
=
log
sin
2
x
sin
2
x
=
log
tan
x
−
log
2
I
1
=
∫
π
2
0
log
tan
x
d
x
Let
y
=
π
2
−
x
,
d
y
=
−
d
x
,
tan
x
=
cot
y
I
1
=
−
∫
π
2
0
log
cot
y
d
y
=
−
∫
π
2
0
log
tan
x
d
x
=
−
I
⇒
2
I
1
=
0
⇒
I
1
=
0
Now
I
=
∫
π
2
0
log
tan
x
d
x
−
∫
π
2
0
log
2
d
x
I
=
π
2
log
2
Suggest Corrections
0
Similar questions
Q.
Solve:
∫
π
2
0
(
2
log
sin
x
−
log
sin
2
x
)
d
x
Q.
Prove that:
∫
π
2
0
(
2
log
sin
x
−
log
sin
2
x
)
d
x
Q.
By using the properties of definite integrals, evaluate the integral
∫
π
2
0
(
2
log
sin
x
−
log
sin
2
x
)
d
x
Q.
By using properties of definite integrals, evaluate the integrals
∫
π
2
0
(
2
l
o
g
s
i
n
x
−
l
o
g
s
i
n
2
x
)
d
x
.
Q.
∫
0
π
/
2
2
log
cos
x
-
log
sin
2
x
d
x
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
MATHEMATICS
Watch in App
Explore more
Integration Using Substitution
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app