The correct option is C π2√2−16√25
I=∫√2−√22x7+3x6−10x5−7x3−12x2+x+1x2+2dx
I=∫√2−√22x7−10x5−7x3+xx2+2dx+∫√2−√23x6−12x2+1x2+2dx
I=∫√2−√23x6−12x2+1x2+2dx
I=2∫√203x6−12x2+1x2+2dx (∵∫a−af(x)dx={0f(x) is odd2∫a0f(x)dxf((x) is even)
I=2∫√20(3x4−6x2+1x2+2)dx
=2[3x55−2x3+1√2tan−1x√2]√20
I=π2√2−16√25