The correct option is A xtan−1x−12log∣∣x2+1∣∣
I=∫tan−1x dx
Here taking u=tan−1x and v=1
∴dudx=11+x2 and ∫vdx=∫1dx=x
I=u∫vdx−∫(u′∫vdx)dx
(Rule of integration by parts)
=(tan−1x)x−∫x1+x2dx
=x(tan−1x)−12∫2x1+x2dx
I=xtan−1x−12∫f′(x)f(x)dx,
Where f(x)=1+x2
=xtan−1x−12log|f(x)|+c
∴I=xtan−1x−12log|1+x2|+c.