1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Proof by mathematical induction
∫ x ln x + √1...
Question
∫
x
ln
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
equals to
A
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
−
x
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x
2
ln
2
(
x
+
√
1
+
x
2
)
−
x
√
1
+
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x
2
ln
2
(
x
+
√
1
+
x
2
)
+
x
√
1
+
x
2
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
+
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
−
x
+
c
I
=
∫
x
ln
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
=
∫
2
x
2
√
1
+
x
2
.
ln
(
x
+
√
1
+
x
2
)
d
x
Let
I
1
=
∫
2
x
2
√
1
+
x
2
.
Put
1
+
x
2
=
t
⟹
2
x
d
x
=
d
t
I
1
=
∫
1
2
t
−
1
2
d
t
=
t
1
2
=
√
1
+
x
2
Using integral by parts,
∫
u
.
v
d
x
=
u
∫
v
d
x
−
∫
(
d
u
d
x
∫
v
d
x
)
d
x
I
=
ln
(
x
+
√
1
+
x
2
)
∫
2
x
2
√
1
+
x
2
d
x
−
∫
[
d
{
ln
(
x
+
√
1
+
x
2
)
}
d
x
.
∫
2
x
2
√
1
+
x
2
d
x
]
d
x
+
c
=
ln
(
x
+
√
1
+
x
2
)
.
√
1
+
x
2
−
∫
[
1
x
+
√
1
+
x
2
.
(
1
+
x
√
1
+
x
2
)
.
√
1
+
x
2
]
d
x
+
c
=
ln
(
x
+
√
1
+
x
2
)
.
√
1
+
x
2
−
∫
d
x
+
c
=
ln
(
x
+
√
1
+
x
2
)
.
√
1
+
x
2
−
x
+
c
=
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
−
x
+
c
Suggest Corrections
0
Similar questions
Q.
If
∫
x
ln
(
x
+
√
1
+
x
2
)
√
1
+
x
2
d
x
=
a
√
1
+
x
2
ln
(
x
+
√
1
+
x
2
)
+
b
x
+
c
, then
Q.
∫
1
−
1
√
1
+
x
+
x
2
−
√
1
−
x
+
x
2
√
1
+
x
+
x
2
+
√
1
−
x
+
x
2
d
x
Q.
∫
√
x
+
1
x
d
x
is equal to