limn→∞n∑r=1rn2+r2=limn→∞n∑r=11n(rn)1+(rn)2
=∫10x1+x2dx=12∫10d(x2)1+x2
=12log(1+x2)|10
=12log(2)
limn→∞(1n2+2n2+3n2+....+n−1n2)