wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx0n(sin3x)n(sinx) is equal to

Open in App
Solution

limx0ln(sin3x)ln(sinx) (using L'Hospital rule)
limx0ddx(lnsin3x)ddx(lnsinx)=limx03cos3xsin3xcosxsinxlimx03.cot3xcotx
3limx0cos3x.sinxcosx.sin3x=3limx0(4cos3x3cosx).sinxcosx.(3sinx4sin3x)
3limx0cosx(4cos2x3).sinxcosx.sinx(34sin2x)
using limit
3[4×1334×0]=3×13=1

1208104_1339015_ans_32501d8c9504448faa351169c40d9e4c.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon