The correct option is A 23
L=limx→03√1+x−3√1−xx
L=limx→0(x+1)1/3−(1−x)1/3x
=limx→0[(x+1)1/3−1]−[(1−x)1/3−1]x
=limx→0(x+1)1/3−1x−limx→0(1−x)1/3−1x
=limx→0(x+1)1/3−1x+1−1+limx→0(1−x)1/3−11−x−1
Since, x tends to 0
⇒1+x tends to 1 and 1−x also tends to 1
So L=13+13 (∵limx→axn−anx−a=nan−1)
=23