The correct option is
D 0
limx→∞(sin√x+1−sin√x)
=limx→∞2cos(√x+1+√x2)sin(√x+1−√x2)
Now for
limx→∞sin(√x+1−√x2)
=limx→∞sin(√x+1−√x2)√x+1−√x2×√x+1−√x2 (sandwich theorem)
=limx→∞√x+1−√x2
=12limx→∞√x+1−√x√x+1+√x⋅√x+1+√x1
=12limx→∞⋅1√x+1+√x=12×0=0
Now, 2cos(√x+1+√x2) is always finite and lies between [−2,2]
∴limx→∞2cos(√x+1+√x2)sin(√x+1−√x2)=finite×0
=0