Consider the given expression,
limx→π2(1−tanx2)(1−sinx)(1+tanx2)(π−2x3)
Expressing tan in the form of sin and cos, we get
limx→π2(cosx2−sinx2)(1−sinx)(cosx2+sinx2)(π−2x3)
Multiplying and dividing by (cosx2+sinx2) , we get
=limx→π2(cosx2−sinx2)2(1−sinx)(cos2x2+sin2x2)(π−2x3)
=limx→π2(cos2x2+sin2x2−2sinx2cosx2)(1−sinx)(cos2x2+sin2x2)(π−2x3)
=limx→π2(1−sinx)(1−sinx)(1−sin2x)(π−2x3)
=limx→π2(1−sinx)cosx(π−2x3)
let π−2x=t
when x→π2,t→0
=limt→0(1−sin(π2−t2))2cos(π2−t2)(π−2(π2−t2)3)
=limt→0(1−cost2)2sint2(t3)
=limt→04sin3t4cost4(t3)
=limt→04sin3t4(t4)3×64
=464=116