wiz-icon
MyQuestionIcon
MyQuestionIcon
17
You visited us 17 times! Enjoying our articles? Unlock Full Access!
Question

limxπ/2[1tan(x2)][1sinx][1+tan(x2)][π2x3] is equal to?

Open in App
Solution

Consider the given expression,
limxπ2(1tanx2)(1sinx)(1+tanx2)(π2x3)
Expressing tan in the form of sin and cos, we get
limxπ2(cosx2sinx2)(1sinx)(cosx2+sinx2)(π2x3)
Multiplying and dividing by (cosx2+sinx2) , we get
=limxπ2(cosx2sinx2)2(1sinx)(cos2x2+sin2x2)(π2x3)
=limxπ2(cos2x2+sin2x22sinx2cosx2)(1sinx)(cos2x2+sin2x2)(π2x3)
=limxπ2(1sinx)(1sinx)(1sin2x)(π2x3)
=limxπ2(1sinx)cosx(π2x3)
let π2x=t
when xπ2,t0
=limt0(1sin(π2t2))2cos(π2t2)(π2(π2t2)3)
=limt0(1cost2)2sint2(t3)
=limt04sin3t4cost4(t3)
=limt04sin3t4(t4)3×64
=464=116

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Animal Tissues
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon