The correct option is B is equal to 1
limx→0x(e(√1+x2+x4−1)/x−1)√1+x2+x4−1
=limx→0x(e⎡⎢⎣(√1+x2+x4 )2−1x(√1+x2+x4+1)⎤⎥⎦−1)×(√1+x2+x4+1)(x2+x4)
=limx→0x(e⎡⎣1+x2+x4−1x(√1+x2+x4+1)⎤⎦−1)×(1+1)x(x+x3)
=limx→0(e⎡⎣x(x+x3)x(√1+x2+x4+1)⎤⎦−1)×2(x+x3)
=limx→0e(x3+x2)−1(x3+x2)×2×2=1