Byju's Answer
Standard XII
Mathematics
Rationalization Method to Remove Indeterminate Form
Solve: lim x...
Question
Solve:
lim
x
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
4
√
x
4
+
1
+
5
√
x
4
+
1
Open in App
Solution
To solve :
lim
x
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
4
√
x
4
+
1
+
5
√
x
4
+
1
=
lim
x
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
9
√
x
4
+
1
=
lim
x
→
∞
⎷
x
2
(
1
+
1
x
2
)
−
3
√
x
3
(
1
+
1
x
3
)
9
√
x
4
+
(
1
+
1
x
2
)
=
lim
x
→
∞
⎛
⎜ ⎜ ⎜ ⎜
⎝
√
1
+
1
x
−
3
x
√
x
√
1
+
1
x
3
9
x
2
√
1
+
1
x
4
⎞
⎟ ⎟ ⎟ ⎟
⎠
=
lim
x
→
∞
⎛
⎜ ⎜ ⎜ ⎜
⎝
√
1
+
1
x
2
−
3
√
3
√
1
+
1
x
2
9
x
√
1
+
1
x
4
⎞
⎟ ⎟ ⎟ ⎟
⎠
=
lim
x
→
∞
⎛
⎜ ⎜ ⎜ ⎜ ⎜
⎝
1
x
√
1
+
1
x
2
−
3
√
x
√
1
+
1
∞
9
√
1
+
1
∞
⎞
⎟ ⎟ ⎟ ⎟ ⎟
⎠
=
1
∞
√
1
+
1
∞
−
3
√
∞
√
1
+
1
∞
9
√
1
+
1
∞
=
0
√
1
+
0
−
0
√
1
+
0
9
√
1
+
0
=
0
−
0
9
=
0
Suggest Corrections
0
Similar questions
Q.
lim
x
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
4
√
x
4
+
1
−
5
√
x
4
+
1
is equals to
Q.
lim
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
−
1
is equal to
Q.
Solve
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
+
1
Q.
lim
n
→
∞
√
x
2
+
1
−
3
√
x
3
+
1
4
√
x
4
+
1
−
5
√
x
4
+
1
equals
Q.
l
i
m
x
→
∞
√
x
2
+
1
−
3
√
x
2
+
1
4
√
x
4
+
1
−
5
√
x
4
−
1
i
s
e
q
u
a
l
t
o
View More
Related Videos
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Explore more
Rationalization Method to Remove Indeterminate Form
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app